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The average thickness of the wetting film left behind during the slow passage of an 
air bubble in a water-filled capillary tube of circular cross-section has been determined 
experimentally as a function of bubble speed and bubble length. For bubbles of 
length many times the tube radius, the ratio of film thickness to tube radius is found 
to be a function of the capillary number only, in agreement with previous 
experimental studies. As has been found previously, the asymptotic result of 
Bretherton (1961) significantly underpredicts the film thickness, the discrepancy 
being greatest at the lowest speeds. For bubbles of length less than about 20 tube 
radii, on the other hand, good agreement with the Bretherton theory is obtained over 
two orders of magnitude in bubble speed. The theoretical profile of long bubbles is 
shown to be unstable; however the explanation of the observed behaviour is, as yet, 
incomplete. 

1. Introductory remarks 
The flow of an air bubble in an otherwise liquid-filled tube has been the subject 

of study for the past half-century. In  various laboratory experiments it is necessary 
to know the mean flow rate of a liquid through a clear tube of small bore; a simple 
estimate of this speed is obtained by introducing an air bubble into the system and 
measuring its travel time over a known distance. In  an early work, Fairbrother & 
Stubbs (1935) realized that, if the liquid wets the glass tube, a thin liquid film will 
be left behind and the speed of the bubble will, in general, exceed the mean rate of 
the flow of the liquid. Reasoning on dimensional grounds, they established that, for 
small tube diameter and low speeds, the fractional error in the speed measurement 
will be a function only of the capillary number Ca = p U / u ,  where U is the bubble 
speed, p the viscosity of the driven fluid and Q is the liquid-air interfacial tension. 
Their experiments indicated that a satisfactory empirical correlation was 

over a range of capillary numbers between and approximately. Here Urn 
is the mean liquid speed. Taylor (1961) experimentally verified (l.l),  extending its 
validity to Ca = 0.1, though his primary interest was for much higher speeds where W 
appears to achieve an asymptotic value of about 0.55. Later work by Cox (1962) 
indicated that this ultimate value was about 0.60. These workers calculated the 
thickness of the residual layer by measuring the rate of accumulation of the viscous 
liquid expelled from the tube and comparing this with the measured bubble velocity. 
Clearly this method is more appropriate to the higher capillary-number range where 
the difference in the two flow rates is substantial. 



260 L. W .  Schwartz, H .  M .  Princen and A .  D .  Kiss 

More recent interest in this problem arises because of its relevance to very slow 
two-phase flow in channels of microscopic dimensions. Such regimes are characteristic 
of flow within the porous rock of an oil reservoir where typically the driven fluid is 
significantly more viscous than the driver. When the two fluids are immiscible, 
capillary forces become important. Such forces are inversely proportional to the pore 
radius which, for a sandstone, may lie in the range 1 to 100 pm. Typical capillary 
numbers for reservoir applications vary from 

An important contribution to our understanding of this problem was made by 
Bretherton (1961). In the low-speed limit Cu+O, he found an approximate solution 
by, in effect, the method of matched asymptotic expansions. Using the assumption 
of quasi-unidirectional flow in the thin-film region, i.e. the so-called lubrication 
approximation, he found that 

or smaller up to perhaps 

W = 1.29 (3Cu)i (1.2 1 
to leading order. Bretherton’s theory and certain extensions will be discussed further 

Bretherton also performed experiments to validate his asymptotic result. He 
inferred the thickness of the wetting layer indirectly; rather than measure the rate 
of efflux of the expelled liquid, he measured the rate of shrinkage of driven slugs of 
two organic liquids in a tube otherwise filled with air. Since his theory predicted that 
film thickness would be determined by local behaviour near the bubble nose, his 
experiments employed semi-infinite bubbles; that is the liquid slug bridging the tube 
was blown downstream by a continuous stream of air. The agreement of theory with 
experiment was less than satisfactory. For capillary numbers in excess of the 
predicted $-power law was approximately obeyed. However a t  slower speeds, the 
measured value of effective film thickness greatly exceeded the theoretical value ; at 
a capillary number of theory and experiment differed by about a factor of 
three. Since the theoretical result is based on the assumption of vanishingly small 
capillary number, the low-speed deviation places the entire theory in doubt. 
Bretherton systematically explored a number of possible causes for the discrepancy, 
yet none of these could provide a satisfactory explanation. In the light of our 
experimental finding, we shall review these various possibilities in $3. Another 
experimental study, by Marchessault & Mason (1960), used an air bubble in a dilute 
aqueous solution of potassium chloride. Film thicknesses were inferred from resistance 
measurements and were found to be substantially larger than Bretherton’s findings. 

Within the lubrication approximation, the problem of determining the asymptotic 
thickness of a soap film that is slowly pulled out of a liquid bath can be shown to 
be virtually identical to the Bretherton problem. In the physical chemistry community 
the result is known as Frankel’s Law; its derivation is completely analogous to 
Bretherton’s work. Unlike the bubble-in-tube problem where there is substantial 
disagreement between theory and experiment, Frankel’s Law has been verified 
without difficulty. Discussions of this work are given in Mysels, Shinoda & Frankel 
(1959) and Lyklema, Scholten & Mysels (1965). The relationship between the two 
problems is discussed briefly in the Appendix to this paper. Similarly, the film-coating 
problem treated by Landau & Levich (1942) is also analogous to these two, within 
the lubrication approximation. 

Recently this problem has been the subject of rather intensive study because of 
both its relevance to oil recovery and other applications, and also as a model for basic 
studies in wetting and spreading. Saffman (1982) employs the Bretherton solution 
to arrive at  a prediction of the unrecoverable fraction of oil in a reservoir that is 

in $3. 
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idealized as a network of capillary tubes. Prothero & Burton (1961) have considered 
bubbles in capillary tubes as a model for the motion of blood cells. Hirasaki & Lawson 
( 1984) have extended the Bretherton solution by including a surface-tension-gradient 
effect in developing a model for flow of bubbly mixtures. This work is motivated, 
apparently, by the contemplated use of foams as pusher fluids in oil recovery. 
Experimentally they find that the effective viscosity of a chain of bubbles, in effect 
the pressure drop per bubble, exceeds the Bretherton prediction by about an order 
of magnitude. This large increase is attributed to surface dilation, and consequent 
variation in surfactant concentration, using ideas from the theoretical treatment of 
Levich (1962). 

The inability of the Bretherton theory to correctly predict the wetting-layer 
thickness at very low speeds casts doubt on its prediction of bubble pressure drops; 
thus some or perhaps a large portion of the pressure drop increase measured by 
Hirasaki & Lawson (1986) may, in fact, occur in clean systems without surfactant. 
Recent theoretical studies by Teletzke (1983) and Teletzke, Davis & Scriven (1986a, b )  
treat thin liquid films in a more general sense; in this work the Bretherton solution 
is augmented, within the context of lubrication theory, by the inclusion of terms to 
model surface-tension-gmhent effects, disjoining pressure in very thin films, and lack 
of perfect slip of the liquid on the bubble boundary. 

The Bretherton problem also plays a role in the fingering instability in Hele-Shaw 
cells discussed first in the important paper by Saffman & Taylor (1958). Because 
multiphase flow in Hele-Shaw cells is often regarded as a model for porous-media 
flow, results obtained in these simple laboratory experiments may have implications 
for oil recovery and ground-water hydrology. At the fluid interface in a Hele-Shew 
cell the pressure difference is essentially proportional to the mean curvature. Saffman 
& Taylor assumed that the component of the interface curvature between the plates 
was constant, thus only the variation in the curvature when the cell is viewed in 
planform is important. Under conditions of perfect wetting by the displaced liquid, 
the curvature between the plates and the thickness of the residual wetting layer will 
vary with the speed of advance of the interface. Park & Homsy (1984) demonstrate 
that the two-dimensional version of the Bretherton problem is the appropriate local 
solution to capture this effect. 

Numerical studies of capillary-tube displacement of a wetting liquid by a semi- 
infinite inviscid slug of gas have recently appeared. Both Reinelt (1984), using a 
finite-difference method, and Shen & Udell(1985), using finite elements, solve the full 
creeping-motion equations with the exact continuity-of-stress conditions on the free 
surface. While Reinelt demonstrates strikingly good agreement with the high-speed 
experimental results of Taylor (1961), neither numerical method is able, apparently, 
to treat the low-speed regime Ca < because of the difficulty in adequately 
resolving the thin-film region. At Ca = 0.01, both solutions predict a thinner wetting 
film than that given by the Bretherton analysis. 

In the next section details of our experimental procedure will be presented. While 
our technique is basically similar to Bretherton’s, a number of modifications have 
been made. In  particular, the injection system has been modified so that air bubbles 
of finite length can be investigated. The experimental results are given in 33. 
Essentially we find that short bubbles produce wetting films whose thickness is in 
close agreement with the Bretherton theory. The wetting films for sufficiently long 
bubbles, including the continuous gas-injection case, is thicker or much thicker, 
depending on the capillary number, but is also essentially independent of bubble 
length. At one particular speed, Ca = 3 x for bubble lengths less than about 25 
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(4 
FIQURE 1. (a) Endless air bubble pushing liquid slug; (b) finite bubble pushing liquid slug. 

tube radii, inferred film thicknesses agree well with the lubrication-theory result 
while for lengths greater than about 50 radii, film thickness is again virtually 
constant at about twice the theoretical result. 

In $3 we compile various theoretical arguments in an effort to understand the 
new experimental results. It is shown that long stagnant wetting films are unstable 
suggesting that other steady-state solutions may exist for long bubbles. Potentially 
non-ideal experimental conditions are re-examined, though none yields an alternative 
explanation for the thicker films. In particular we consider and discard both lack of 
perfect slip, termed surface hardening by Bretherton, and surface-tension-gradient 
effects, due to contamination of the interface, for example, since both lead to 
reduction rather than increase of inferred film thickness. 

Finally, in $4, we seek to put our new results in perspective and suggest additional 
avenues of attack, both experimental and theoretical, that may lead to a more 
complete understanding of this important problem. 

2. Experimental procedure 
Our approach was essentially that of Bretherton (1961) in which a slug of a wetting 

liquid is forced to move through an initially dry glass capillary tube at constant 
velocity U .  The parameter W, defined in ( l . l ) ,  is obtained from 

AS W = -  
D ’  

where A S  is the decrease in length of the liquid slug and D is the distance of travel. 
In some respects, our procedure differed from that of Bretherton : (i) We used water 

as the liquid phase, while Bretherton used aniline and benzene. (ii) In  Bretherton’s 
and some of our experiments, the slug was followed by an endless air bubble 
(figure 1 a), while we introduced the end-to-end bubble length L as a variable. In  that 
case, the slug and air bubble are followed by liquid (figure 1 b). (iii) Bretherton moved 
the slug by applying hydrostatic suction at the upstream end of the tube, while we 
pushed the slug (or slug plus bubble) by injecting air (or water) from a glass syringe, 
driven by a positive displacement pump with adjustable flow rate (Sage Instruments 
Model 355). The link between the syringe and the capillary tube consisted of an 18- or 
22-gauge hypodermic needle and Teflon connector. 

The precision-bore Pyrex tubes were 95 cm long and had internal diameters of 1 
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A B 

FIGURE 2. Schematic experimental arrangement. 

or 2 mm (Lab-Crest Scientific Glass Co.). The stated tolerance of the tube diameters 
was f0.0075 mm. The tubes (and all other parts) were cleaned with chromic acid, 
and dried by passing dry filtered nitrogen through them for about 15 minutes. The 
water was distilled, and then passed through a Milli-Q Reagent-Grade Water System 
(Millipore Corp.) which consists of a prefilter, an activated-carbon filter, two 
ion-exchange cartridges, and a final 0.22 pm filter. 

The dry tube was mounted on top of a heavy square brass bar, resting near its 
ends on two lab jacks, which permitted accurate levelling. A slug of water, between 
1 and 3 cm long, was introduced at one end. In  some experiments, the slug was 
pushed down the tube by injecting air. In  most experiments, however, the slug was 
followed by an air bubble of length L, and slug plus bubble were driven by injecting 
water from the pump. 

The slug was photographed as it moved past two fixed points A and B, exactly a 
distance D = 65 cm apart (figure 2). We used a Nikon FM2 35 mm camera, equipped 
with a PN 11 extension ring, a Nikkor 105 mm/f4 lens, and a Vivitar 283 electronic 
flash. The distance between the front of the lens and the tube was about 17 cm. A 
)-inch aluminium rod waa mounted above the tube at A and B in the same focal plane 
as the slug. Its image on the negative provided the magnification factor, which ww 
very close to unity. The slug length S was measured directly on the negative with 
a measuring microscope (Ernest F. Fullam, Inc.) to an accuracy of fO.001 cm. For 
short bubbles, the length L could be measured with the same accuracy from the 
negative. Since the longer bubbles did not fit on the negative their length was 
obtained with a ruler to 0.05 cm. 

The slug's velocity U was obtained from the A-to-B travel time, while the surface 
tension and viscosity were taken as cr = 72.0 mN/m andp = 0.93 m Pa s (23 f 0.5 "C). 
The resulting error in the capillary number should not exceed a few percent. 

The error in A S  and, therefore, in W can be considerably greater. Although the 
mean tube diameter 2R does not need to be known with great accuracy, slight 
deviations from uniformity can result in large errors, particularly at low velocities 
where AS is small. As a typical example, if the true diameters in the vicinity of A 
and B differ by 0.5 %, then the slug lengths at A and B will differ by 1 yo for this 
reason alone. In a 1 mm tube, this amounts to an apparent AS of 0.02 cm for a 2 cm 
slug. As we shall see later, a typical value of W at, say, Cu = 3 x is W = 0.004, 
or A S  = 0.25 cm. Therefore, in this particular case, non-uniformity, if unaccounted 
for, would cause an 8 yo error in W. Our tubes were tested for uniformity by measuring 
the length of a mercury slug in the vicinity of A and B. The difference in diameter 
was found to be extremely small (2 0.1 %), so that the associated error in AS was 
comparable to that in the length measurements themselves. 
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W = 1.29 (3Cu)i; - - -, high-speed empirical correlation, W = l.OCd. 
FIUURE 3. The variation in W =2h , /R  with capillary number: -, Bretherton theory, 

3. Discussion of results 
We now discuss the experimental findings, which are presented graphically in 

figure 3. Our original apparatus used a capillary tube with a 2 mm inside diameter 
and, as was done by Bretherton, the liquid slug was followed by an endless stream 
of air. For values of capillary number between 6 x and lop3, values of the speed 
difference or, equivalently, twice the wetting-film thickness, are given by the solid 
dots in the figure. As in Bretherton’s experiments, using two other liquids, the 
discrepancy between theory and these measurements increases as the speed is 
reduced. In  order to discern the effects of buoyancy, as explained below, a series of 
experiments with a 1 mm-inside-diameter tube was performed over the same range 
of speeds. As can be seen in the figure (open dots), no systematic change in the results 
is apparent. 

given value of capillary number, the film thicknesses measured here, using 
water and an endless air stream, are somewhat greater than those measured by 
Bretherton. Bretherton used two organic liquids, aniline and benzene. It is perhaps 
interesting to note that, for these three liquids, film thicknesses increase with 
increasing interfacial tension. 

The solid line in the figure is the theoretical result of Bretherton, obtained by 
invoking the ‘lubrication ’ approximation. That is, by requiring quasi-unidirectional 
motion in the thin wetting layer and assuming the slope of the gas-liquid interface 
is small, it  may be shown that the velocity profile is parabolic in y; this ordinate is 
measured inward from the tube wall. In a bubble-fixed coordinate system, the 
boundary conditions for this steady flow are no slip on the wall, u(x,  0) = - U ,  and 
no shear on the interface u,(x, yl) = 0. Here U is the constant forward speed of the 
bubble in the direction of increasing x and yl(x) is the shape of the interface to be 
determined. The bubble viscosity is assumed to be zero and the pressure within it 
is constant. The pressure in the wetting layer is given by the interface pressure jump 
which is approximately equal to cry:. With h ,  denoting the asymptotic film 

For 
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thickness, and requiring the backward mass flux in the layer to be constant, it  may 
be shown that the equation of the interface is 

The explicit dependence on capillary number Ca = p U / a  may be removed by the 
non-dimensionalization and scaling 

y1 = hwv,  x = h,(3Ca)f<, (3.2u, b)  

which gives (3.3) 

This thin-film equation is then integrated numerically, using a shooting method, with 
initial conditions given by a linearized version of (3.3). Assuming the existence of an 
‘overlap’ region, where 11 becomes large, yet the actual interface slope remains small, 
the asymptotic value of y;(z) may be identified with the bubble nose curvature R-l. 
For thin films, R is approximately equal to the tube radius. The final result is 

h, = 0.643(3Cu)f. (3.4) R 

Moreover the fractional speed difference W, plotted in figure 3, is simply equal to 
2h,/R. 

Further details of Bretherton’s derivation and an extended result, to higher order 
in Ca, may be found in his original paper. Park BE Homsy (1984) rederive the result 
(3.4) using the more modern formalism of matched asymptotic expansions. Note that 
the Bretherton solution gives the asymptotic layer thickness h, using only local 
conditions at the bubble nose. This solution is independent of bubble length. 

With a reasonable degree of rigour, Bretherton demonstrates that the lubrication 
equation (3.3) is a valid approximation to the full nonlinear problem and, when 
treated as an initial-value problem, yields a unique solution for the layer thickness 
given by (3.4). Because the original problem, without approximation, is highly 
nonlinear, other steady-state solutions are in no way ruled out. 

Because of stability considerations, also to be discussed below, bubbles of finite 
length, between 2.5 and 4 cm, were then used to drive the water slug. Again, no 
change was apparent (cf. triangles in figure 3). Still shorter bubbles were then used. 
In  each case the bubble length, including the front and rear menisci, was taken as 
close as possible to 3 mm. I n  the 1 mm tube, the thin film region is then about 2 mm 
in length. Even at the highest speed tested, therefore, the scaled film length A( was 
greater than 50, assuming the Bretherton theory to be correct. These data are shown 
using squares in figure 3. At last rather close agreement with the Bretherton theory 
was obtained except at the lowest speed tested, Ca = 6 x This may well be due 
to experimental error which becomes quite appreciable in that region. Alternatively, 
agreement might have been obtained at this low speed, if even shorter bubbles had 
been used, but this was not investigated further. 

using 
bubbles of various lengths. The actual value of Ca varied slightly from run to run 
(3 x & 10 %). The corresponding values of W were corrected for this via the 
)-power law. The corrected results are shown in figure 4 for a total of 65 runs. Also 
shown is the Bretherton result W x 0.00259 and the experimental value for the 

A more detailed study was then made at a constant speed Ca = 3 x 



266 L. W .  Schwartz, H .  M .  Princen and A .  D .  Kiss 

4.0 

w x 10s 

2.0 

1 .o 

1 .o 2.0 3.0 03 
0 

L (cm) 

FIGURE 4. Variation in W with bubble length at  capillary number 
CLZ = 3 x lo-&, 1 mm ID tube. 

endless bubble W x 0.0052. For bubbles between 0.18 and 1.20 cm in length, a total 
of 27 runs, the data are scattered around the Bretherton value with a maximum 
deviation of no more than 8 %. Similarly, for bubbles longer than 2.5 cm, the data 
vary about the endless bubble result within 8 yo. In  the transition region, where L 
lies between these values, somewhat greater scatter is observed. For very short 
bubbles the thin-film region is not long and values of W in excess of the Bretherton 
value are expected. Indeed, for bubbles less than the tube diameter in length, no 
thin-film region exists. The data do show an upward trend for small L. Teletzke 
(1983) has calculated the effective film thickness for very short bubbles by numerical 
integration of (3.3) in both the forward and backward directions. He finds that the 
semi-infinite result is valid unless the film length is less than a tube radius. The data 
seem to indicate a somewhat larger effect than his theory predicts. 

Figures 3 and 4 considered together suggest that the problem may have multiple 
solutions: the lubrication result appropriate to bubbles of moderate length and a 
second solution for very long bubbles. Two questions naturally arise: (i) For what 
value of length does the Bretherton result cease to be valid and what is the cause 1 
(ii) What is the origin of the second (conjectured) solution, assumed also to be of 
steady state ? Paradoxically, of course, the Bretherton solution, which predicts a 
wetting-film thickness that is determined solely by conditions near the nose, works 
for the shorter bubbles where conditions at the rear meniscus might have been 
expected to have had greater influence. For comparison, in figure 3 we show the 
empirical expression of Fairbrother & Stubbs (1935) 

W = l.OCUk, 

which, while obviously closer to this second solution, does not predict the apparent 
deviation from simple power-law behaviour at  low speeds. Bretherton neglected the 
variation in pressure due to changes in the transverse curvature. To the extent that 
wetting-film thickness is order Cu), he showed that the transverse curvature effect 
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is of relative order C d  smaller than those effects retained. Were the wetting-film 
thickness order Cd, on the other hand, the transverse curvature term would be of 
comparable magnitude to the ylS2 term. We note that the long-bubble data in 
figure 3 can be fit quite well with a linear combination of C d  and Cd terms. Such a 

W = 0.05(3Ca)4+2(0.643) (3Ca)i, semi-empirical fit is 

where the coefficient of the order-! term is retained at the previous value. 
A partial answer to  the ib t  question comes from stability considerations. An 

unsteady analogue of (3.3) can easily be derived. The wetting-layer volumetric flow 
rate Q is given, under the lubrication approximation, by 

-- Y ;  dP - - u y , - - - .  Q 
2xR 3p dx 

Mass conservation for unsteady flow is governed by 

(3.5) 

For slowly varying axisymmetric flow, the pressure jump across the interface is 
given by 

(3.7) 

for y J R  Q 1 .  Retaining this second component of the interface curvature and 
combining (3.5) and (3.6), we obtain 

2 
y u  = u Y l x - ~ Y : [ ( Y l x 2 2 + ~ ) ]  

3P 
(3.8) 

in a bubble-fixed coordinate system. In a laboratory coordinate system, on the other 
hand, the first term on the right of (3 .8)  is absent. Because of the no-shear interface 
condition, the uniform wetting film between the bubble end menisci is stagnant; let 
us therefore proceed in laboratory coordinates. Introducing dimensionless variables 
according to 3pR4 

(3.8)  may be written in universal form, for U = 0, as 

y1  = cB, x = R f ,  t = - K ac3 

y"- t -  - - M s ( g - - - + g - ) ] -  X Z Z  x x (3 .9)  
where c is the wetting film thickness. The linearized form of (3.9) is simply 

gj = - ( g  - - ^ -  +&-). (3.10) 

For a long film, we can consider a continuous spectrum of disturbances of the form 
2x22 22 

1 y" rv Re (,d+ikP 

which, when inserted in (3.10), gives 

The growth constant o is positive for sufficiently small wavenumber. The wavelength 

w = k2-k4 .  

of maximum growth is 
A,,, = 242nR x 8.9R ( 3 . 1 1 ~ )  
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with a characteristic time given by 
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(3.11b) 

Thus a thin stagnant annular film is unstable provided its length is greater than the 
tube circumference. Sometimes called the Rayleigh 'sausage ' instability, the same 
result was obtained by Carroll & Lucassen (1974) for a thin stagnant film on the 
outside of a solid cylinder. In  fact both can be shown to be special cases of the general 
linear stability results of Goren (1962) for thin films with negligible inertia. 

We thus arrive at  a criterion which distinguishes the longer from the shorter 
bubbles, the former being unstable. If we identify c with the Bretherton film 
thickness h,, however, we find the characteristic time for growth of a disturbance 
to be quite long. Using the total run time in a tube of length L as a reference, we 
find that 

Based on this simple argument one might conclude that the instability identified here 
could only be important at speeds much higher than those considered in the present 
experiments. 

While the above stability calculation may also be criticized as not being as relevant 
as one performed in a bubble-fixed frame, the fact remains that long films are not 
stable and, if the problem as posed were to admit multiple solutions, this instability 
could be sufficient to cause transition to another steady-state solution. We deal here 
with a nonlinear free-surface problem for which no existence or uniqueness arguments 
are available. Certain other problems of this type, particularly those involving 
capillary forces, have been shown to possess multiple solutions, see, for example, 
Schwartz & Vanden-Broeck (1979), Chen & Saffman (1980), and Vanden-Broeck 
(1983). 

In an effort to explain the difference between theory and experiment, Bretherton 
considered and rejected a number of potential experimental difficulties. We shall 
reconsider his list, augmented by some others, and, as he did, conclude that no single 
cause can explain the effectively thickened wetting layer. 

We shall first dismiss those potential sources of error that can be treated most 
simply as follows. 

(1)  Inertial effects can be neglected since the Reynolds number based on tube 
diameter is O( lop2) a t  low speeds where, for long bubbles, the deviation from theory 
is greatest. 

(2) Undoubtedly the bubble rides high in the tube; however increasing the Weber 
number pgR2/a by a factor of four, by going to the larger tube, caused no discernible 
change in W .  

(3) Lack of perfect drying of the tube would lead to a reduction, not an increase, 
in inferred layer thickness. 

(4) Disjoining pressure effects could only be important for films much thinner than 
those produced here. 

(5) Evaporation of the film liquid into the bubble can be shown to be an 
insignificant effect. 

(6) Aside from the contribution of the transverse curvature variation to the 
pressure, which we feel may have a qualitative effect, neglect of other terms in the 
lubrication approximation to the creeping-motion equations is shown to be self- 
consistent for Ca < 5 x lop3 by Bretherton and also Teletzke (1983). 

(7)  Tube wall-roughness effects may be dismissed since long-bubble and short- 
bubble data were obtained in the same tube. 
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An additional argument leading to rejection of each of the above sources of error is 
that none of them would lead to a critical value of bubble length at which the error 
mechanism would become operative, as the data in figure 4 would seem to indicate. 

Two related mechanisms that may lead to an effectively thicker residual film 
warrant more careful consideration. These are lack of perfect slip a t  the air-water 
interface and surface-tension gradients arising from contamination of the interface. 

Lack of perfect slip at the interface can be modelled by assuming the bubble to 
contain a fluid of some arbitrary viscosity. We let the pressure within the bubble be 
p ,  and let the bubble fluid viscosity be pl. Similarly the pressure and viscosity of the 
liquid wetting the walls are denoted by p 2  and p2 respectively. Within the context 
of lubrication theory for axisymmetric flow, let the interface be denoted by r*(x) 
where x is the axial coordinate. In  bubble-fixed coordinates we apply the conditions 
of no slip on the walls, continuity of tangential stress at the interface and zero net 
flux within the bubble to the solutions of the axial momentum equation for each fluid. 
The result is two coupled equations for the pressure gradients p ; ( z )  and p; (x ) ,  
assuming unidirectional motion : 

r*2 
p' l[, +*2-lMr*2 4 1 R2-r*2+r*2 logF] = - p 2 M U ,  

= - 4 p 2 [ U ( R 2 - r * 2 ) - G ] .  n: 

( 3 . 1 2 ~ )  

(3.12 b) 

Here M is the viscosity ratio pJp2 and Q2 is the 
Let 

r* = R--y,(x) 

and asaume that the wetting film is thin, i.e. 

H = y l / R  4 1 .  

volumetric flux of the outer fluid. 

We now expand (3.12) for small H and retain leading terms, order-one terms and 
order-(MH) terms. The simplified equations are 

p i  iR2( 1 + 4MH) + p i  $MR2H2 = - Mp2 U ( 3 . 1 3 ~ )  

p;2R4H2+pi iH9 = -4p2 2 R 2 U H + L  . (3.13 b )  

Assume that the interface becomes straight and parallel to the tube walls far 
downstream, i.e. as H + H , .  Then pi  = p i  there and the flux Q2 can be evaluated 

and [ Q 1  R 

there as 
(3.14) 

Consistent with the assumption of small interface slope, we have 

&-pi  = aRH"'(2). (3.15) 

Equations (3.13) and (3.15) are three equations for the unknown pressure gradients 
and the interface profile H(x) .  We can now eliminate p;  and p i  among them and 
introduce the Bretherton scaling 

H = H , q  

and x = RH,(3Ca)-;g. 
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FIGURE 5.  (3.18). 

Again neglecting MH2 terms relative to M H  terms, we arrive a t  an equation for the 

(3.16) 

(3.17) 

interfbce 

= 7 { (1 +4m) (1 +mq) 

where m = MH,.  

Thus the effect of finite bubble viscosity is to introduce the factor in curly brackets 
in (3.16). When the bubble viscosity is taken as zero, (3.3) is recovered. 

Equation (3.16) has been integrated numerically, using a fourth-order Runge-Kutta 
method, for various values of m. As before, the limiting value of qEc as q-+ 00 gives 
the wetting-layer thickness in the form 

H ,  = (3Ca)i P(m). (3.18) 

The function P(m) is shown in figure 5.  In the limit m+O, P assumes Bretherton’s 
value 0.643. The other limiting case, m-+ 00, yields P x 1.02, exactly a factor of d 
larger than the m = 0 case. In fact the form of P(m) shown in figure 5 is closely 
approximated by the curve fit 

1, 7-1 1+2m+2m(l+4m)g 

(3.19) P(m) = , - { l+d+(2:-1)  tanh[1.2log,,m+0.12]}. 

In  any event, the wetting layer is always thicker for a finite value of the viscosity 
ratio. The amount of fluid left behind, equivalent to the rate of shrinkage of a driven 
slug, can be calculated from (3.14). It is always less than the inviscid-bubble case 
because the wetting film, while thicker, is no longer stagnant but has an average 
velocity in the direction of bubble motion. 

That lack of perfect slip cannot explain the larger quantity of wetting fluid left 
behind in the experiment was numerically demonstrated for one particular value of 
capillary number, Ca = by Teletzke (1983). Bretherton himself showed that an 
infinite value of bubble viscosity leads to less fluid being left behind at any speed. 

0.643 
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Here we have demonstrated that this is generally true for all viscosity ratios and 
capillary numbers consistent with the slowly varying, thin-film, and low-speed 
approximations. The problem has a similarity solution in the sense that the 
wetting-film thickness does not depend on the viscosity ratio and the capillary 
number separately, but only via the single parameter (pc1/,u2) (h, /R) .  

It is not a priori clear that  a surface-tension-gradient effect will produce results 
analogous to finite driver viscosity. It can be demonstrated that this is true, however, 
at least in a qualitative sense. A full solution to this problem requires knowledge of 
the surface diffusion of contaminants as well as the details of the adsorption-desorp- 
tion of these species between the interface and the bulk of the liquid. Levich (1962) 
describes such a coupled solution procedure for a spherical bubble or droplet in an 
unbounded liquid. We will be content here with a less exact treatment. 

Assume that a steady-state distribution of surfactant exists on the interface in a 
bubble-fixed coordinate system. The concentration variation can be expected to be 
such that the surface tension is highest at the nose and decreases monotonically as 
one moves aft on the bubble. That is, the surface-tension gradient dv/dx is positive 
with x increasing in the direction of bubble motion. A force balance on an element 
of the interface yields, for the shearing stress, 

(3.20) 

The flux in the wetting layer, in the plane-flow problem, becomes 

Q = -- Y: d (uy;)-uy,+--, Y? 
3p dx 2,u dx 

= -cu, 
where c is the effective layer thickness to be determined. This equation may be 
rewritten as 3Ca(y1-c) 1 d a  y; = 

Y: 
Introducing the Bretherton variables ( E ,  r ) ,  (3.21) becomes 

(3.21) 

(3.22) 

The second derivative term in (3.22) is thus formally of order Cai smaller than the 
7-l term and will be discarded. We shall treat the coefficient of the 1-l term as a 
constant; this would indeed be the case if we assume that the surface-tension 
variation followed an exponential law near the nose of the form v = v,, exp (612). It 
would also seem reasonable to expect that the surface-tension gradient is an 
increasing function of bubble speed, i.e. capillary number. 

A model problem, including a surface-tension-gradient effect is, therefore, 

(3.23) 

where B is a positive constant corresponding to positive da/dz, i.e. larger surface 
tension at the nose than in the thin-film region. Within the thin film 7”’ is taken to 
be zero and the constant film thickness is given by 
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B 7 0  P 

0 1 .Ooo 0.6430 
10-3 1.001 0.6404 
10-2 1.010 0.616 
0.1 1.127 0.349 
0.15 1.225 0.151 
0.17 1.271 0.036 

TABLE 1. 

Note that r0 is greater than one for permissible positive values of B. The amount of 
fluid left behind, expressed as an effective thickness is, as before, 

where P is the limiting value of 7” as 7 + 00. This equation may be integrated using 
a shooting method to find the dependence of P on B. Initial conditions are given by 
the linearized version of (3.23) with solution 

7 x To + Edf, 

where 

and E 4 1. Numerical values of P and qo are given in table 1. For values of B in excess 
of 0.173 matching is not possible because 7 ultimately tends to - 00 rather than 00. 

We see that our model of the surface-tension-gradient effect produces results that are 
qualitatively similar to finite bubble viscosity ; the wetting-film thickness is increased, 
however the quantity of fluid left behind is reduced. A reverse surface-tension 
gradient, where the surface tension at the nose is lower than in the film, i.e. B < 0, 
is possible in principle, namely in the presence of rather high levels of simple 
electrolytes. This can be ruled out in our experiments. It may, however, have 
contributed to the large values of inferred film thicknesses obtained by Marchessault 
& Mason (1960) using their electrical-conductivity technique. 

4. Concluding remarks 
In  this work we have reported experimental measurements of the thickness of the 

wetting film left behind after the slow passage of a bubble in a capillary tube. For 
sufficiently short bubbles, the film thickness agrees closely with the predictions of 
lubrication theory. For bubbles that are very long, on the other hand, a different 
‘solution curve’ is measured; these results are also virtually independent of bubble 
length. The deviation between these two curves becomes quite large a t  low speeds. 

We have shown that a long axisymmetric annular film is unstable to the Rayleigh 
‘sausage’ mode. The wavelength of maximum growth is about 9 times the tube 
radius. This length may be compared with the bubble length a t  which the measured 
result, at one particular speed, begins to deviate from theory. From figure 4, this 
critical bubble length is between 20 and 25 tube radii. The rate of growth of the 
sausage instability, according to linear theory, is quite small, however. Many 
potential sources of error in the experiment have been investigated and no single one 
can provide an adequate explanation for this ‘second’ solution. 
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By analogy with the related problem of determining the shape of steady-state 
fingers in unstable displacement in Hele-Shaw cells, recently shown to possess 
multiple solutions by Vanden-Broeck (1983), we suggest that this problem also may 
admit multiple solutions. It seems clear that the lubrication version of this creeping- 
motion free-boundary problem has a unique solution. We feel it to be worthwhile to 
attack the full problem numerically using a boundary-integral technique. Such 
methods have been successful in producing multiple solutions to other problems 
where capillarity is important. Our experimental finding that long bubbles move 
faster than short ones has important implications for the stability and ‘effective 
viscosity’ of water-gas foams. Presumably the bubble-size distribution in a foam will 
be strongly influenced by the ultimate coalescence of bubbles moving at different 
speeds. 

There is experimental evidence that the inability of lubrication theory to explain 
all the data may only occur for the axisymmetric case. The problem of predicting 
the thickness of soap films is directly analogous to the planar version of the 
Bretherton problem. Theoretical predictions of soap-film thickness, using Frankel’s 
Law, are in very close agreement with experiment provided the soap film is thicker 
than about 1000 A. Such results are reported in Mysels et a2. (1959) and Lyklema 
et al. (1965). The range of capillary numbers in these experiments varies between 
approximately lo-’ and The strict equivalence of Frankel’s Law and the 
Bretherton film-thickness result is discussed in the Appendix. Since the soap film is 
fundamentally two-dimensional, this suggests that the anomalous results may only 
occur in the axisymmetric version of the moving-bubble problem. Similarly, Levich 
(1 962) reports confirmation of predicted layer thickness in film-coating experiments. 
If we accept this premise, the sausage instability may play an important role since 
it cannot occur in the two-dimensional case. It must be remembered, however, that 
the direct analogy among these various problems is strictly valid only in the 
lubrication approximation. 

Our group is continuing its experimental investigation of this problem. It would 
be desirable to measure the possible dependence of the critical bubble length on Ca. 
In addition to determining the rate of shrinkage of driven-liquid slugs in capillary 
tubes, i t  is possible to simultaneously measure the pressure drop per bubble; these 
results can also be compared with predictions from lubrication theory. We hope to 
report on these experiments in the near future. 

Appendix. Relation of Frankel’s law and film coating to the Bretherton 
problem 

The wetting-film thickness, as given by (3.4) may be written as 

K 

this approximation is valid for either axisymmetric or two-dimensional geometries. 
For axisymmetric flow, K is the reciprocal of the tube radius R while for two- 
dimensional flow, K is the reciprocal of the channel half-width. The form of (A 1) is 
determined by the balance of viscous and capillary forces within the transition zone, 
i.e. the region between the bubble-nose or outer region where the curvature is 
essentially constant and the thin-film or inner region, where the layer is stagnant in 
laboratory coordinates and is of constant thickness. Within the transition zone, the 
appropriate boundary conditions are no-slip on the tube wall and no-shear on the 
free surface. 
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Consider now the prediction of the thickness of a two-dimensional vertical film that 
is being drawn out of a soap solution, at low speed U, using a moving wire frame. 
The outer region does not have constant curvature; rather the shape of the free 
surface is determined by the balance of capillary and hydrostatic pressures. It is, in 
effect, a static meniscus whose shape is given by 

Here y is measured vertically upward from the ambient water level and 8 is the 
inclination of the tangent to the free surface. The free surface becomes vertical at 
a height 

yo = (3". 
The magnitude of the curvature there is 

2 

Yo 
K = -  

using (A 2). The transition zone is centred about yo; thus this value of K is to be used 
in (A 1). 

The lubrication-approximation boundary conditions for the film flow are analogous 
to those for the bubble-in-tube problem. One of them is a no-shear condition, applied 
here, by symmetry, on the film centreline. On the free surface, the no-slip condition 
is applied because the soap-film surface is assumed to be completely inextensible. 
This interchange of boundary conditions clearly has no effect on the lubrication- 
theory result. 

Substituting for K in (A l), using (A 3) and (A 4), we arrive a t  Frankel's Law 

where T = 2h, is the total width of the film. The constant C is (0.643) 3 f b  x 1.88, 
in agreement with Lyklema et al. (1965). 

The Landau-Levich film-coating problem is more easily seen to be analogous to 
the Bretherton problem. The only modification required is the insertion of the 
curvature of the static meniscus as given by (A 3) and (A 4) ; this curvature replaces 
the reciprocal of the tube radius in the Bretherton problem. 
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